Interpolating Isogeometric Boundary Node Method and Isogeometric Boundary Element Method Based on Parameter Space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric Boundary Element Method with Hierarchical Matrices

In this work we address the complexity problem of the isogeometric Boundary Element Method by proposing a collocation scheme for practical problems in linear elasticity and the application of hierarchical matrices. For mixed boundary value problems, a block system of matrices – similar to Galerkin formulations – is constructed allowing an effective application of that matrix format. We introduc...

متن کامل

Fast Isogeometric Boundary Element Method based on Independent Field Approximation

An isogeometric boundary element method for problems in elasticity is presented, which is based on an independent approximation for the geometry, traction and displacement field. This enables a flexible choice of refinement strategies, permits an efficient evaluation of geometry related information, a mixed collocation scheme which deals with discontinuous tractions along non-smooth boundaries ...

متن کامل

Shape-Newton Method for Isogeometric Discretizations of Free-Boundary Problems

We derive Newton-type solution algorithms for a Bernoulli-type freeboundary problem at the continuous level. The Newton schemes are obtained by applying Hadamard shape derivatives to a suitable weak formulation of the freeboundary problem. At each Newton iteration, an updated free boundary position is obtained by solving a boundary-value problem at the current approximate domain. Since the boun...

متن کامل

A Robust Multigrid Method for Isogeometric Analysis using Boundary Correction

The fast solution of linear systems arising from an isogeometric discretization of a partial differential equation is of great importance for the practical use of Isogeometric Analysis. For classical finite element discretizations, multigrid methods are well known to be fast solvers showing optimal convergence behavior. However, if a geometric multigrid solver is naively applied to a linear sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Modeling in Engineering & Sciences

سال: 2020

ISSN: 1526-1506

DOI: 10.32604/cmes.2020.010936